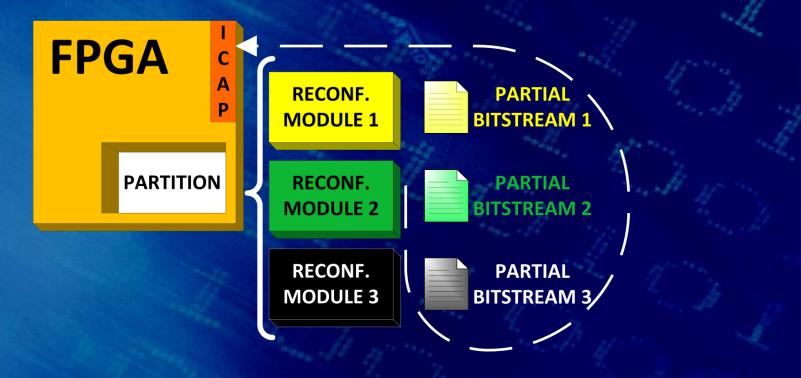
Dynamic Partial Reconfiguration for Dependable Systems



Giulio GAMBARDELLA

PhD Student XXVII Ciclo Tutor: Paolo Prinetto giulio.gambardella@polito.it www.testgroup.polito.it

 Dynamic Partial Reconfiguration (DPR) is the ability of a programmable device (i.e., FPGA) to dynamically change some of its selected portions while the rest is unchanged and operating

 Dynamic Partial Reconfiguration (DPR) is the ability of a programmable device (i.e., FPGA) to dynamically change some of its selected portions while the rest is unchanged and operating

- Dynamic Partial Reconfiguration (DPR) is the ability of a programmable device (i.e., FPGA) to dynamically change some of its selected portions while the rest is unchanged and operating
 - Often used to hardware accelerate tasks by ondemand reconfiguration with specific IP-Cores

 Dynamic Partial Reconfiguration (DPR) is the ability of a programmable device (i.e., FPGA) to dynamically change some of its selected portions while the rest is unchanged and operating

But:

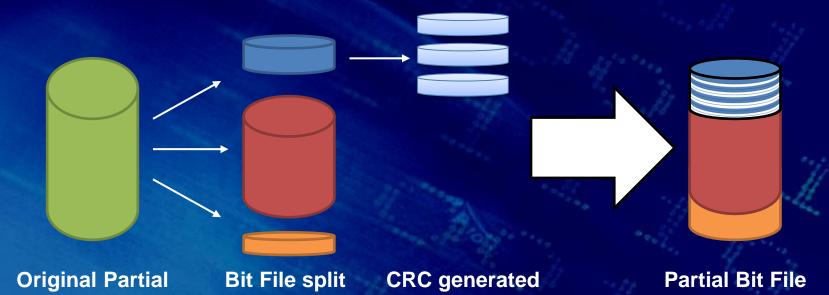
– Is the DPR process itself dependable?

 Is it possible to exploit DPR to improve FPGA robustness by mitigating Non-functional properties (i.e., temperature, power, aging) effects?

Mitigating SEE in DPR process

ISSUE:

 When performing partial reconfiguration, wrong data can be written in the FPGA configuration memory


GOAL:

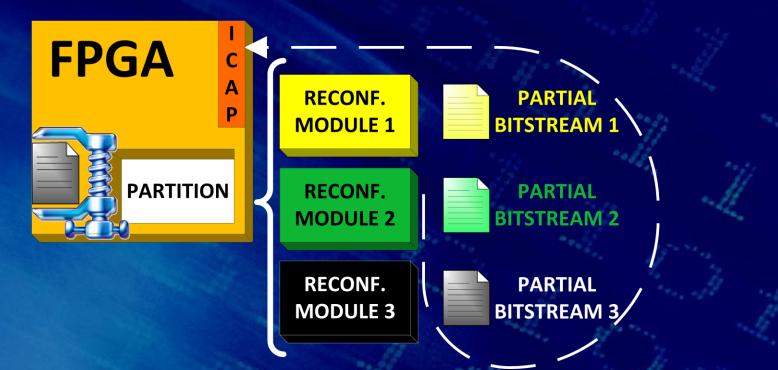
Increase the dependability of the partial reconfiguration process by avoiding misreconfigurations

MY CONTRIBUTIONs:

 Detecting faults before configuring the FPGA [9] or correcting a misconfiguration [6] with minimal impact

Mitigating SEE – D²PR [9]

Bit File

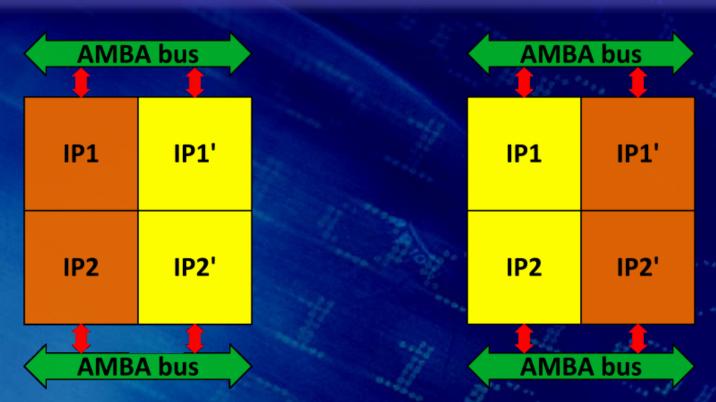

into logical Blocks

for each word in critical Block

reassembled with CRC

CRC Signatures are inserted to protect the bitstream addressing and control words, avoiding reconfiguration with faulty data

Mitigating SEE – Zipstream [6]


A special partial bitstream, for each reconfigurable partition, is compressed and stored internally the FPGA, to quickly reconfigure if a faulty bitstream has been read

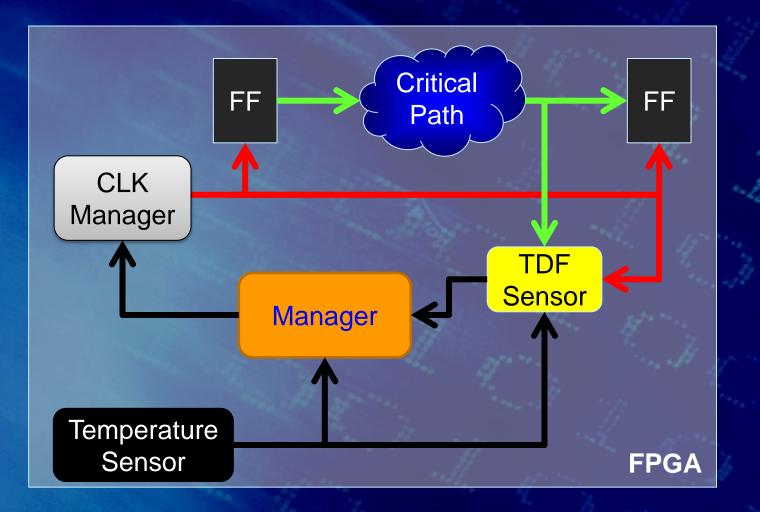
Aging mitigation by DPR

ISSUE:

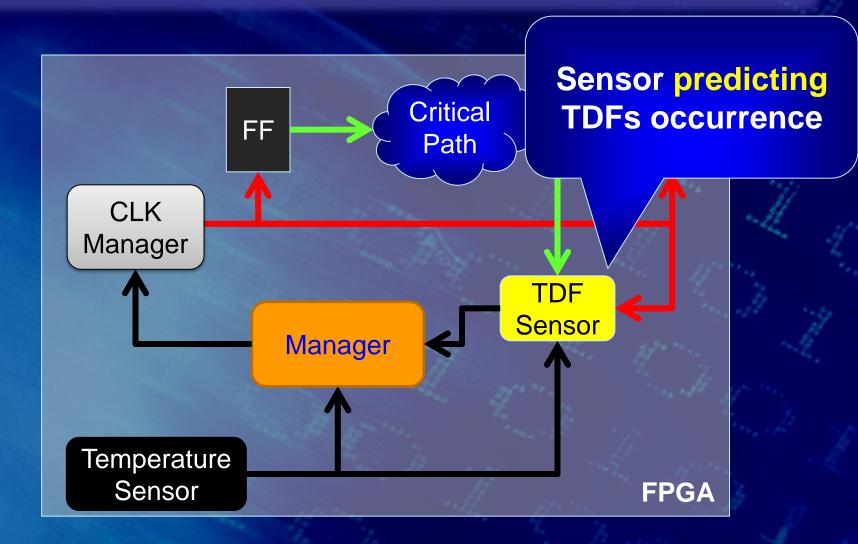
- NBTI induces a degradation of the robustness of the cells by decreasing its Static Noise Margin, especially if the data stored is statically 1 or 0
 GOAL:
- Mitigate aging effects in SRAM-based FPGA configuration memory
 MY CONTRIBUTION:
- By taking advantage of the unused hardware resources and allocating functions to be implemented uniformly into available resources

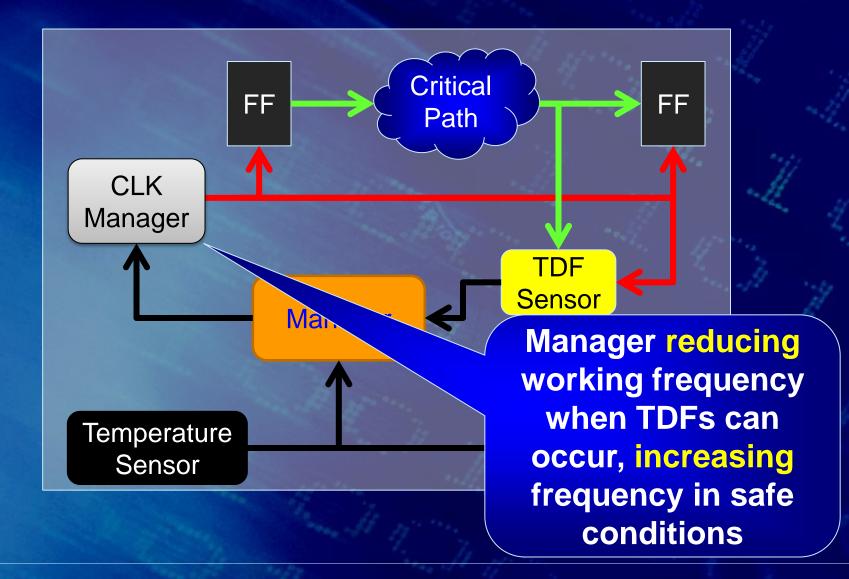
Aging mitigation by DPR

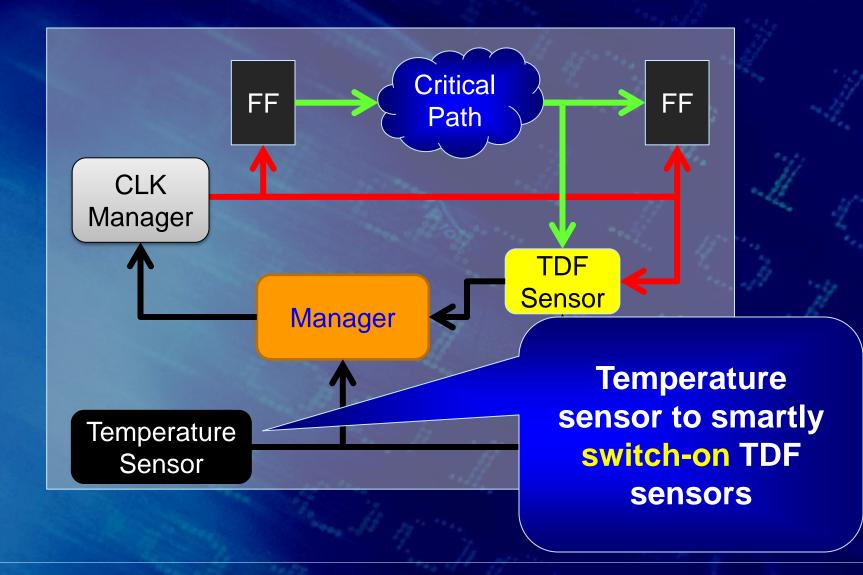
By ensuring the 50% probability of having '0' in each configuration memory bits, by switching among two status (Work and Rest), providing the minimum aging effect [5] increasing the SNM

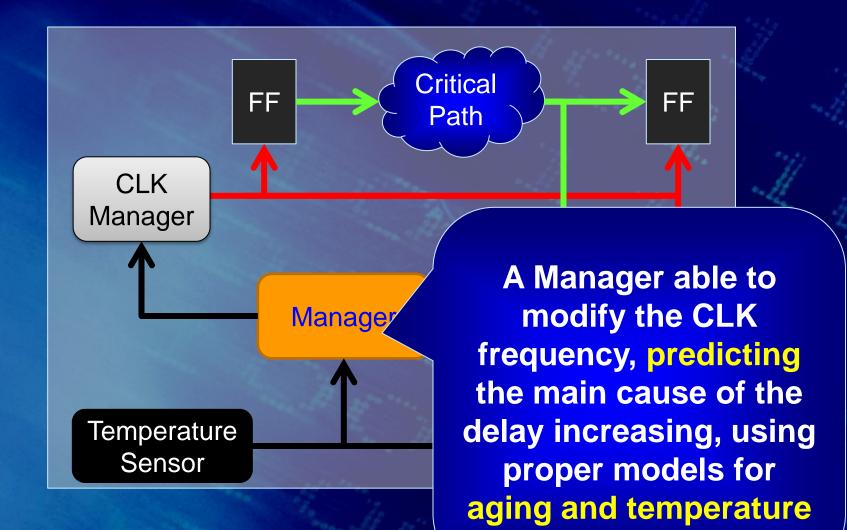

NFPs mitigation by DPR

ISSUE:


 Non-functional properties (i.e., temperature, power, aging) variations are affecting systems performances and reliability, modifying systems behavior


GOAL:


- Increase Systems-on-Programmable-Chip dependability exploiting DPR
 MY CONTRIBUTION:
- SATTA [13]: a methodology to predict critical path delay changing in FPGA-based system to avoid Transition Delay Faults (TDFs) due to NFPs, integrated into state-of-the-art FPGA design tools



Slide #9

Publications – ISI Journals

PUBLISHED:

 [13] "SATTA: a Self-Adaptive Temperature-based TDF awareness methodology for dynamically reconfigurable FPGAs", S. Di Carlo,
 G. Gambardella, P. Prinetto, D. Rolfo, P. Trotta; ACM Transaction on Reconfigurable Technology and Systems

[14] "SA-FEMIP: A Self-Adaptive Features Extractor and Matcher IP-Core Based on Partially Reconfigurable FPGAs for Space Applications", S. Di Carlo, G. Gambardella, P. Prinetto, D. Rolfo, P. Trotta; IEEE Transactions On Very Large Scale Integration (VLSI) Systems

SUBMITTED:

 [15] "MarciaTesta++: A tool for the automated generation of Software-Based Self Tests for both Instruction and Data Cache Memories", S. Di Carlo, G. Gambardella, M. Indaco, P. Prinetto, D. Rolfo; Springer Design Automation for Embedded Systems

[10] "On Enhancing Fault Injection's Capabilities and Performances for Safety Critical Systems", S. Di Carlo, G. Gambardella, P. Prinetto, F. Reichenbach, T. Lokstad, G. Rafiq; Proceedings of the Euromicro Conference on Digital System Design (DSD), 2014

[11] "A novel methodology to increase fault tolerance in autonomous FPGA-based systems", S. Di Carlo, G. Gambardella, P. Prinetto, D. Rolfo, P. Trotta, A. Vallero; Proceedings of the International On-Line Testing Symposium (IOLTS), 2014

 [12] "A cloud-based Cyber-Physical System for environmental monitoring", T. Sanislav, G. Mois, S. Folea, L. Miclea, G. Gambardella, P. Prinetto; Proceedings of the Mediterranean Conference on Embedded Computing (MECO), 2014

[8] "FEMIP: A high performance FPGA-based features extractor & matcher for space applications", S. Di Carlo, G. Gambardella, P. Lanza, P. Prinetto, D. Rolfo, P. Trotta; Proceedings of the Field Programmable Logic and Applications (FPL), 2013

[9] "Dependable Dynamic Partial Reconfiguration with minimal area & time overheads on Xilinx FPGAS", S. Di Carlo, G. Gambardella, M. Indaco, P. Prinetto, D. Rolfo, P. Trotta; Proceedings of the Field Programmable Logic and Applications (FPL), 2013

 [5] "NBTI Mitigation by Dynamic Partial Reconfiguration", S. Di Carlo, S. Galfano, G. Gambardella, M. Indaco, P. Prinetto, D. Rolfo, P. Trotta; Proceedings of the 13th Biennal Baltic Electronics Conference (BEC), 2012

[6] "ZipStream: improving dependability in Dynamic Partial Reconfiguration", S. Di Carlo, G. Gambardella, T. Huynh Bao, P. Prinetto, D. Rolfo, P. Trotta; Accepted at 7th IEEE International Design and Test Symposium (IDT), 2012

[7] "SAFE: a Self Adaptive Frame Enhancer FPGA-based IP-core for real-time space applications", S. Di Carlo, G. Gambardella, P. Prinetto, D. Rolfo, P. Trotta; Accepted at 7th IEEE International Design and Test Symposium (IDT), 2012

[1] "MarciaTesta: an automatic generator of test programs for microprocessors' data caches", S. Di Carlo, G. Gambardella, M. Indaco, P. Prinetto, D. Rolfo; Proceeding of the 20th Asian Test Symposium (ATS), 2011

[2] "A unifying formalism to support automated synthesis of SBSTs for embedded caches", S. Di Carlo, G. Gambardella, M. Indaco, P. Prinetto, D. Rolfo; Proceedings of the 9th East-West Design & Test Symposium (EWDTS), 2011

[3] "Validation & Verification of an EDA automated synthesis tool", S. Di Carlo, G. Gambardella, M. Indaco, P. Prinetto, D. Rolfo; Proceedings of the 6th International Design and Test Workshop (IDT), 2011

[4] "An Area-Efficient 2-D Convolution Implementation on FPGA for Space Applications", S. Di Carlo, G. Gambardella, M. Indaco, P. Prinetto, D. Rolfo, G. Tiotto; Proceedings of the 6th International Design and Test Workshop (IDT), 2011

Any Question?